Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Pharmazie ; 75(8): 375-380, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1435671

RESUMEN

Diabetes mellitus (DM) is one of the major risk factors for COVID-19 complications as it is one of the chronic immune-compromising conditions especially if patients have uncontrolled diabetes, poor HbA1c and/or irregular blood glucose levels. Diabetic patients' mortality rates with COVID-19 are higher than those of cardiovascular or cancer patients. Recently, Bacillus Calmette-Guérin (BCG) vaccine has shown successful results in reversing diabetes in both rats and clinical trials based on different mechanisms from aerobic glycolysis to beta cells regeneration. BCG is a multi-face vaccine that has been used extensively in protection from tuberculosis (TB) and leprosy and has been repositioned for treatment of bladder cancer, diabetes and multiple sclerosis. Recently, COVID-19 epidemiological studies confirmed that universal BCG vaccination reduced morbidity and mortality in certain geographical areas. Countries without universal policies of BCG vaccination (Italy, Nederland, USA) have been more severely affected compared to countries with universal and long-standing BCG policies that have shown low numbers of reported COVID-19 cases. Some countries have started clinical trials that included a single dose BCG vaccine as prophylaxis from COVID-19 or an attempt to minimize its side effects. This proposed research aims to use BCG vaccine as a double-edged weapon countering both COVID-19 and diabetes, not only as protection but also as therapeutic vaccination. The work includes a case study of regenerated pancreatic beta cells based on improved C-peptide and PCPRI laboratory findings after BCG vaccination for a 9 year old patient. The patient was re-vaccinated based on a negative tuberculin test and no scar at the site of injection of the 1st BCG vaccination at birth. The authors suggest and invite the scientific community to take into consideration the concept of direct BCG re-vaccination (after 4 weeks) because of the reported gene expressions and exaggerated innate immunity consequently. As the diabetic MODY-5 patient (mutation of HNF1B, Val2Leu) was on low dose Riomet® while eliminating insulin gradually, a simple analytical method for metformin assay was recommended to ensure its concentration before use as it is not approved yet by the Egyptian QC labs.


Asunto(s)
Vacuna BCG/administración & dosificación , Infecciones por Coronavirus/inmunología , Diabetes Mellitus/inmunología , Células Secretoras de Insulina/citología , Neumonía Viral/inmunología , Animales , Vacuna BCG/inmunología , COVID-19 , Niño , Infecciones por Coronavirus/complicaciones , Diabetes Mellitus/fisiopatología , Humanos , Masculino , Pandemias , Neumonía Viral/complicaciones , Ratas , Regeneración/inmunología , Factores de Riesgo , Vacunación/métodos
2.
Cells ; 10(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1390542

RESUMEN

The rising prevalence of diabetes is threatening global health. It is known not only for the occurrence of severe complications but also for the SARS-Cov-2 pandemic, which shows that it exacerbates susceptibility to infections. Current therapies focus on artificially maintaining insulin homeostasis, and a durable cure has not yet been achieved. We demonstrate that our set of small molecule inhibitors of DYRK1A kinase potently promotes ß-cell proliferation, enhances long-term insulin secretion, and balances glucagon level in the organoid model of the human islets. Comparable activity is seen in INS-1E and MIN6 cells, in isolated mice islets, and human iPSC-derived ß-cells. Our compounds exert a significantly more pronounced effect compared to harmine, the best-documented molecule enhancing ß-cell proliferation. Using a body-like environment of the organoid, we provide a proof-of-concept that small-molecule-induced human ß-cell proliferation via DYRK1A inhibition is achievable, which lends a considerable promise for regenerative medicine in T1DM and T2DM treatment.


Asunto(s)
Homeostasis , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Genes Reporteros , Harmina/farmacología , Homeostasis/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Cinética , Masculino , Ratones , Modelos Biológicos , Factores de Transcripción NFATC/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo
4.
Cells ; 9(11)2020 11 13.
Artículo en Inglés | MEDLINE | ID: covidwho-927551

RESUMEN

The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was declared a pandemic by the WHO on 19 March 2020. This pandemic is associated with markedly elevated blood glucose levels and a remarkable degree of insulin resistance, which suggests pancreatic islet ß-cell dysfunction or apoptosis and insulin's inability to dispose of glucose into cellular tissues. Diabetes is known to be one of the top pre-existing co-morbidities associated with the severity of COVID-19 along with hypertension, cardiocerebrovascular disease, advanced age, male gender, and recently obesity. This review focuses on how COVID-19 may be responsible for the accelerated development of type 2 diabetes mellitus (T2DM) as one of its acute and suspected long-term complications. These observations implicate an active role of metabolic syndrome, systemic and tissue islet renin-angiotensin-aldosterone system, redox stress, inflammation, islet fibrosis, amyloid deposition along with ß-cell dysfunction and apoptosis in those who develop T2DM. Utilizing light and electron microscopy in preclinical rodent models and human islets may help to better understand how COVID-19 accelerates islet and ß-cell injury and remodeling to result in the long-term complications of T2DM.


Asunto(s)
Apoptosis , Infecciones por Coronavirus/patología , Diabetes Mellitus Tipo 2/patología , Neumonía Viral/patología , Animales , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/virología , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Síndrome Metabólico/complicaciones , Síndrome Metabólico/patología , Estrés Oxidativo , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/virología , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA